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Welcome

Abstract

Scientists have extensively studied the mechanisms that orchestrate the growth and divi-
sion of bacterial cells. Cells adapt their shape and dimensions in response to variations
in the intracellular and extracellular environments by integrating information about the
presence of nutrients or harmful agents in the decision to grow or divide. Filamentation is
a process that occurs when rod-shaped cells stop dividing but continue to grow, thus
producing elongated cells (Y. Wang et al. 2014; Y. Wang, Yin, and Chen 2014; Jaimes-
Lizcano, Hunn, and Papadopoulos 2014; Sheryl S. Justice et al. 2008). Some cells can
naturally grow as filamentous, while others only do so under stressful conditions (Cayron,
Dedieu, and Lesterlin 2020; S. S. Justice et al. 2006). Here, we use mathematical modeling
and computational simulations to evaluate a toxic agent’s intracellular concentration as
a function of cell length. We show that filamentation can act as a strategy that promotes
the resilience of a bacterial population under stressful environmental conditions.

Acknowledgements

I offer this work with gratitude to all the people who have been part of my personal and
intellectual growth. Thanks.
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Introduction

Antimicrobial resistance (AMR) can be considered one of the most critical health problems
of the century. That is, microorganisms’ ability to grow despite exposure to substances
designed to inhibit their growth or kill them. In April 2014, the World Health Organization
(WHO) published its first global report on AMR surveillance (“Editorial Board” 2014).
Taking out of the darkness a common fear, a possible post-antibiotic future in which
common infections or minor injuries can kill. Therefore, understanding the mechanisms
of avoiding antibiotic action is essential for producing knowledge and developing strategies
that reduce the generation of resistant bacteria.

Bacterial adaptability to hostile environmental conditions can be explained by different
elements, not necessarily exclusive. For instance, mutational phenomena that allow bac-
teria to evade the mechanisms of action of certain antibiotics have been one of the most
studied (Dever and Dermody 1991; Andersson 2005). However, continuous technolog-
ical development has allowed us to explore hypotheses where phenotypic heterogeneity
is considered in detail, allowing us to study emergent behaviors in isogenic populations
(Ackermann 2015). Thus, we have gone from studying bacterial communities as a whole to
studying them from each of the cells that compose them and their emergent properties.

Single-cell microfluidics is one of the technologies that has made it possible to create
and maintain the microenvironments necessary for studying bacteria (Yin and Marshall
2012). Among the most outstanding utilities of microfluidics, we can find the engineer-
ing of bacterial systems, microbial ecology, bacterial cell cycle, homeostasis, cell shape,
and geometry. The latter is one of the characteristics that allow the study of bacterial
filamentation, a phenomenon that occurs when the cell stops dividing but continues to
grow, thus producing elongated cells in the form of filaments.

Mathematical modeling is among the most common strategies to address the AMR prob-
lem. Mathematical modeling allows one to pose real-life problems in a space filled with
mathematical language, solve them, and test their solutions in a real-life living system
(Verschaffel, Greer, and Corte 2002). Therefore, this approach can also be used to ana-
lyze in detail why a particular biological phenomenon is occurring, how its behavior can
be modified, and, finally, to design specific experiments to determine their accuracy and
usefulness.
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This thesis describes and discusses how and why bacterial filamentation may be a general
mechanism for cell survival upon exposure to toxic agents, such as antibiotics, based
on experimental analyses and mathematical modeling. We divided this thesis into three
chapters that explain the methodologies used and take us one step closer to understanding
filamentation with each chapter.

Chapter 1 describes the fundamental process of identifying and quantifying the properties
of each cell over time, for example, its length, the amount of internal toxin, and the amount
of resistance to the toxin.

Chapter 2 used the data processed in the previous chapter to explore bacterial filamenta-
tion at the population and single-cell levels. Data exploration allowed us to simultaneously
observe the behavior of filamentation and its properties in heterogeneous populations. For
reference, one population with an antibiotic resistance gene located on the chromosome
and another on multicopy plasmids.

Finally, in Chapter 3, we postulated a mathematical model that considers the relationship
of cell surface area and volume to the uptake of a toxic agent diffusing into the medium.
This model allowed us to specifically evaluate the effect of filamentation in an environment
similar to that observed experimentally. Thus, experiments and models work together to
learn more about a biological phenomenon to help understand and combat the AMR
problem.
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Hypothesis and objectives

Hypothesis

Bacterial exposure to a stressful environment, such as openness to antibiotics, can trigger
filamentous-like growth in the bacteria, which can increase their probabilities of survival
compared to those bacteria that are unable to the filament.

General objective

To characterize bacterial survival due to filamentation upon antibiotics exposure, math-
ematically and experimentally in strains with chromosomal resistance genes or a non-
conjugative multicopy plasmid.

Particular objectives

• Obtain time series with the state of each bacteria before exposure to antibiotics
(i.e., normal, stressed, or dead).

• Quantify cell growth and division rates and correlate them with cell status.

• Mathematical modeling of bacterial filamentation based on cell length and internal
concentration of antibiotics over time.

10



1 Image processing

1.1 Introduction

With the progress of technology, optical and fluorescence microscopy has become a funda-
mental tool for the characterization and understanding of the bacterial world. Microscopy
has allowed humanity to extend its senses to observe the unknown world with exciting
new perspectives they might never have envisioned otherwise. Furthermore, microscopy
offers a clear advantage over other techniques that characterize bacteria since it can ac-
quire data from living cells in spatial resolution (Schermelleh et al. 2019). (Schermelleh
et al. 2019).

Microfluidic research techniques’ mechanical and intellectual development provides an
excellent opportunity to overcome bio-medical and chemical techniques (Convery and
Gadegaard 2019). With the discovery of fluorescent proteins (e.g., GFP and DsRed)
and improvements in fluorescent reporters, it is possible to specifically label distinctive
cellular components and track cellular functions (Specht, Braselmann, and Palmer 2017).
Therefore, collectively, it is possible to study communities of bacteria at the level of
individual cells (Balaban et al. 2004; Elowitz et al. 2002).

Although all this technological development has provided a significant advance for the
scientific community in the image analysis field, extracting quantitative properties from
these images is crucial. Unfortunately, it is a difficult step for analyzing experiments.

Not so long ago, image analysis in biology relied on manual quantification. However,
manual analysis suffers from two main problems: 1) accuracy and 2) scalability (that
is, analyzing thousands or more images). Fortunately, improvements in image accuracy
and computational image analysis capabilities are revolutionizing the quantification of
biological processes, reducing the manual correction required to analyze the experiments.
(Caicedo et al. 2017; Smith et al. 2018).

Here, we used a series of programs in 𝜇J (https://github.com/ccg-esb-lab/uJ), which
consists of an ImageJ macro library (mainly) for quantifying unicellular bacterial dynamics
in microfluidic devices (Schneider, Rasband, and Eliceiri 2012) (See Figure 1.1).
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Figure 1.1: Montage of the microfluidic experiment. The first column was used for observ-
ing DICs, the second column was used to detect the expression of the antibiotic
resistance plasmid, which was marked by GFP, and the third column was used
to observe the antibiotic, which was marked by Ds-Red.
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1.2 Preprocessing

We exported the figures obtained by the NIS-Elements software (RRID:SCR_014329)
from the microfluidics experiments in TIFF (Tagged Image File Format) format. Each
figure was named as follows: experimentxyc1t001, where experiment indicates the name
assigned to the experiment, xy the trap number, c the fluorescence channel, and t the
passage of time.

Subsequently, we compile the images, rename them and save them as images in different
folders. We maintained the classification by fluorescence channels and phase contrast,
and within the channel folder, it is the sub-classification by trap number.

1.3 Segmentation

We carry out an image segmentation analysis to determine which parts of the photographs
correspond to cells (See Figure 1.2). Segmentation consists of classification at the pixel
level, which allows us to define the pixels that give identity to the limit of a cell, its
interior, and the image’s background (everything that is not a cell). The resulting image
is the segmentation mask, containing only the pixels that identify cells.

To build the segmentation mask, we used Deepcell (Van Valen et al. 2016). Deepcell is
a network trained with a robust set of images that people previously classified as cells.
However, the generation of the segmentation masks is not absolved of errors (see also
Section 1.5). Sometimes we must correct them manually due to

1. mistakenly identifying two or more cells as one,

2. identifying two or more cells when there is only one cell, and

3. failing to identify a cell.

13



Figure 1.2: Montage of the microfluidic experiment at the segmentation phase. The first
column was used for observing the limits of each cell (_i.e._ the mask), the
second column was used to detect the expression of the antibiotic resistance
plasmid, which was marked by GFP, and the third column was used to observe
the antibiotic, which was marked by Ds-Red.
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1.4 Tracking

From the image segmentation, we obtain ROI files (region of interest), which contain
coordinates of the position of individual cells in each photograph (Brinkmann 2008) (See
Figure 1.3). Tracking is following a region of interest in a consecutive series of images. In
this case, the tracking identifies the lineages, that is, the ancestry of each cell.

We read the ROI files in Python through the shapely package, which efficiently recon-
structs polygons, thus calculating the length of the cells (Van Rossum and Drake 2009;
Gillies et al. 2007--). Also, in Python, using ROI files, we track cells with the k-nearest
neighbors’ algorithm that uses various cell properties, such as fluorescence intensity,
length, and shape of each cell, to identify cell lineages (Altman 1992).
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Figure 1.3: Montage of the microfluidic experiment at the tracking phase. The first col-
umn was used for observing each cell through the experiment in a different
color, the second column was used to display the length, and the third column
was used to observe division events
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1.5 Manual corrections

For cell-tracking manual correction, we used Napari, an open-source python-based tool
designed to explore, annotate, and analyze large multidimensional images (Sofroniew et
al. 2021). Our custom cell-viewer allows us to easy lineage data visualization, custom-
plotting, and lineage correction. Code for our cell-viewer is available on https://github.
com/ccg-esb-lab/uJ/tree/master/single-channel.

We produced high-throughput data of thousands of cells with a single-cell resolution to
the end of the lineage manual reconstruction. We obtained data on the time series of
fluorescent intensity, morphological properties of individual cells (e.g., elongation, dupli-
cation rate), and time-resolved population-level statistics (e.g., probability of survival to
the antibiotic shock).

1.6 Data extraction

We construct a file in columnar format through image processing that contains the in-
formation necessary to analyze each experiment (i.e., chromosomal and plasmids) in its
different traps (i.e., XY identifier). See Table 1.1 for a complete description of the output
data. Subsequently, the table was analyzed in R for statistical computation and plotting
(see Chapter 2) (R Core Team 2022).

Table 1.1: Resulting data table from image processing.

Column Description
experimentID Unique identifier of the experiment.
trapID Unique identifier of the trap used.
lineageID Unique integer of the stem cell and its ancestry.
cellID Unique identification number for each cell existing since the

beginning of the experiment or generated later.
motherID Unique identification number for each cell existing since the

beginning of the experiment or generated later.
trackID Indicates the x-y coordinates where the cell being tracked

starts.
roiID Indicates the x-y position in which the cell is located,

followed after each photograph.
frame Number of the photograph in the sequence of photographs

taken, indicating the elapsed time (10 minutes per frame).
length Cell length.
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Column Description
division Indicates cell division events, represented by the value 1

when they occur and 0 otherwise.
GFP Represents the relative fluorescence intensity in each cell by

green fluorescent protein (i.e., GFP).
DsRed Represents the relative fluorescence intensity for cells

generated by rhodamine’s internalization (i.e., DsRed); an
indicator of cell death events.

tracking_score Determine how good or bad the tracking of a cell was.
state Indicates the state of the cell determined from its length

and fluorescence thresholds. -1 for death, 0 for normal, and
1 for filamentation (see Section 2.2 for detailed information).
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2 Experiment analysis

2.1 Introduction

The previous chapter (see Chapter 1) detailed the steps necessary to extract data from a
set of microfluidic images through image analysis techniques and fluorescence microscopy.
Each step was instrumental in creating a dataset that was easy to explore and ask ques-
tions. With the help of computational biology, systems biology, and data analysis tech-
niques, we could process these files to help us in the search to find the role of filamentation
in cell survival.

Computational biology and systems biology contributed to the development of this anal-
ysis. In principle, computational biology originated after the origin of computer science
with the British mathematician and logistician Alan Turing (regularly known as the fa-
ther of computing) (TURING 1950). Over time, systems biology emerged as an area that
synergistically combines models and experimental data to understand biological processes
(Bruggeman et al. 2007). Thus, giving a step towards creating models that, in general,
are phenomenological but sometimes serve to discover new ideas about the process under
study. Without the computer’s power, modern ideas and aspects of studying biological
sciences would otherwise be unthinkable.

Here, we divide the experimental analysis into two main parts: 1) at the cell level or
measurements at specific points in time and 2) at the population level and time series.
The first level allowed us to identify the individual contribution of each variable under-
study to determine cell survival. The second level allowed us to understand how the
population behaves according to the passage of time in the face of exposure to a harmful
agent (in this case, beta-lactam antibiotics). Together, both visions of the same study
phenomenon allowed us to extract the main ideas for postulating a mathematical model
that seeks to show how filamentation is a factor for cell survival in stressful environments
(see Chapter 3).
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2.2 General preprocessing of data

The raw data processing consisted mainly of creating two levels of observation for the cells
of both chromosomal strains and multicopy plasmids. The first level is at a cell granularity,
point properties. The second level consists of the cells over time, thus observing properties
at the population level. We did this because it would allow us to understand what factors
affect filamentation and why.

We normalized the fluorescence values of DsRed and GFP for both experiments based
on the values observed before antibiotic exposure. It allowed us to have a basis to work
with and compare expressions between cells. In the case of DsRed environment drug
concentration, we also applied a logarithmic transformation to observe subtle changes in
fluorescence intensity that would allow us to detect cell death.

Ultimately, we decided to classify cells into four fundamental groups based on whether
the cell filamented and survived (see Figure 2.1). We define a filamented cell as a cell with
more than two standard deviations from the mean concerning the lengths observed before
introducing antibiotics into the system. On the other hand, although there are multiple
ways to define death from single-cell observations (Trevors 2012; Kroemer et al. 2008),
we considered a cell dead or missing when we stopped having information about it, either
because of fluorescence in the red channel was above a given threshold (resulting from an
increase in cell membrane permeability and the introduction of fluorescent dye into the
cell) or because it left the field of observation. Therefore, we defined a surviving cell as a
cell observed before and after antibiotic exposure that did not surpass the DsRed death
threshold.
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Figure 2.1: Cell classification and its distribution across experiments. We define
a filamented cell as a cell whose length exceeded two standard deviations from
the mean at any time during the experiment. A surviving cell is a cell we
observed before and after exposure to the antibiotic and did not surpass the
DsRed death threshold. Accordingly, we removed from the analysis those
cells that died before or were born after antibiotic exposure. Therefore, we
delimited the effect caused by antibiotic exposure.
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2.3 Results

2.3.1 Cell length and the amount of GFP are crucial in determining
cell survival

We evaluated the DsRed, GFP, and length values for each cell at different time points:
initial, filamentation, and end. This preprocessing allowed us to observe and quantify
each cell at critical times in the experiment and eliminate noise or signals outside the
scope of this investigation.

We define the initial time as the first time we observed the cell in the experiment. Fila-
mentation time equals when a cell reaches the filamentation threshold (see Figure 2.4) for
the first time. We defined the end time as the time of the last observation of the cell. We
decided to bound the end time for surviving cells to one frame (10 min) after the end of
antibiotic exposure so that the observed signal would reflect the final stress responses.

When we compared the distributions of DsRed, GFP, and length for both experiments, we
observed the changes in their role in cell survival. In Figure 2.2, we show that indistinctly
and, as expected, surviving cells managed to eliminate the antibiotic by the end time. In
contrast, dead cells presented higher levels of antibiotics (measured by proxy through the
mean DsRed intensity of the cell).
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Figure 2.2: DsRed temporal distribution. To evaluate the incident effect of the an-
tibiotic marked by DsRed on cells by class, we show its values at three key
moments: start, filamentation (SOS), and end. The upper asterisks repre-
sent the significance value when comparing a group X to the filamented and
surviving cell reference. Asterisks in a line indicate whether or not there is
a significant difference in the survival of non-filamented cells. Dots represent
the mean of each group. The line bars represents the distribution of the data.
Although, at the initial time, we observe multiple significant differences, this
is likely due to the intrinsic noise of the system since, as expected, the values
are close to zero. We observed a difference between the surviving and non-
filamented cells for the chromosomal strain for the SOS time, but the same
did not occur for the plasmid strain. The final amount of DsRed makes a clear
difference between survival and death.

On the other hand, GFP observations in Figure 2.3 showed us that filamented cells had
low fluorescent intensities (low plasmid copy-number) at the beginning of the experiment.
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In comparison, the chromosomal strain did not exhibit noticeable changes in GFP levels.
For the final observation times, GFP measurements indicated that among the cells that
did not filament, the ones that survived exhibited a reduced GFP expression concerning
cells killed by the antibiotic. Meanwhile, for the filamented cells, whether surviving or
dead, their GFP measurements indicated no difference at the beginning or the end of the
experiment, suggesting the presence of other determinants of cell survival.
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Figure 2.3: GFP temporal distribution. To evaluate the incident effect of the GFP on
cells by class, we used the same notation as in Figure 2.2. The chromosomal
strain exhibits variability in GFP at different time points, mainly due to ex-
perimental noise resulting from low fluorescent intensity values. As expected,
filamented cells had a lower initial GFP in the plasmid strain. At the time of
filamentation, there appear to be differences in fluorescence between surviv-
ing and dead cells. However, in the end time, we observed that the surviving
non-filamented cells have lower GFP values than the non-filamented dead cells
and alive filamented cells.
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Cell length was one of the factors that GFP expression levels could not explain for cell sur-
vival. In Figure 2.4, we show that the conclusions regarding filamentation were applicable
for both chromosomal and plasmid strains. For the initial times, filamented and survived
cells were shorter in length than those that died but longer than not filamented cells of
both classes, while non-filamented cells did not differ. We observed no length differences
between cells at filamentation time. Thus, survival could depend on other factors, such
as growth rate. In the final time, the results were well-defined. Surviving cells had a
greater length than their non-surviving pair (i.e., dead filamented and non-filamented
cells). However, for filamented cells, surviving cells generally represent a distribution of
higher final length values but are not as extensive as their dead counterpart. Which we
could explain as a length limit to which cells can grow without dying. Nevertheless, we
had no information to evaluate such a hypothesis.
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Figure 2.4: Length temporal distribution. To evaluate the incident effect of length
on cells by class, we use the same notation as in Figure 2.2. The observations
for both strains, chromosomal or plasmid, are the same. In the beginning,
the surviving filamented cells already have a difference in length from the rest
of the classes. At the time of filamentation, there is no difference to help
determine whether the cell will survive or not. Finally, in the final time, it
seems that the surviving filamented cells have a greater length than the rest of
the groups. However, this length is moderate compared to the excess length
shown by non-surviving filamented cells. On the other hand, we highlighted
the growth of the surviving non-filamented cells. Therefore, although they
did not reach a length for us to classify as filamented, the cells did resort to
filamentation.

Once we observed the effects of GFP expression levels and lengths in determining whether
a cell lives or dies, we projected the cells onto the plane. We painted them with their class
status (See Figure 2.1) to determine whether these two variables contained the necessary
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information to cluster the data correctly. In Figure 2.5, we show the initial GFP and
length values projection. While, with some work, we could contextually place the results
in Figure 2.3 and Figure 2.4, the initial values did not appear to determine the classes.
Therefore, we explored the final versus initial values differences in Figure 2.6. With
this new representation of the cells in the plane, we contextualized the statistical results
presented in Figure 2.3 and Figure 2.4. Besides, it showed us that differences in length
(i.e., filamentation) and reductions in GFP expression are essential in determining cell
survival. Though the clustering of cell status is not entirely separated, other variables
affect the experimental results in cell survival.
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Figure 2.5: Experiment’s initial values. By positioning a cell in space based on its
initial length and GFP values, we can see that class separation occurs, but
not as a strong signal. Therefore, we concluded that although the initial state
influences the result, this is not everything. For this, we have the example
of the length changes throughout the experiment caused by filamentation. In
this graph, the GFP scale is at log10 to help us observe those minor differences
between the experiments.
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Figure 2.6: Experiment’s initial values differences. By comparing the metric differ-
ences of the last observation and the first observation of a cell, we can separate
mainly the surviving filamented cells from those that did not do it in both
experiments (blue dots). Meanwhile, cells with plasmids form a small accumu-
lation of surviving cells that did not produce filament (green dots). However,
this has made a breakthrough in understanding what is affecting cell survival.
There are still variables that we can include to understand this phenomenon
better.

2.3.2 Number of divisions and cell age do not appear to play a clear
role in determining cell survival

In Section 2.3.1, we explored the effect on cell survival through GFP variability and
cell length.However, Figure 2.5 and Figure 2.6 showed us the possibility of other factors
relevant to the phenomenon under study. As some papers in the literature suggest, some
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of these other factors may be cell division and chronological age (i.e., how much time has
passed since the last cell division at the time of exposure to a toxic agent) (Moger-Reischer
and Lennon 2019; Roostalu et al. 2008; Heinrich, Leslie, and Jonas 2015). Therefore,
we chose to observe these two metrics in experiments at a purely qualitative level, i.e.,
without the inclusion of, e.g., metrics of membrane or cell cycle properties (Joseleau-Petit,
Vinella, and D’Ari 1999).

Although we expected to see a small contribution, either by the number of divisions or cell
age, in Figure 2.7 and Figure 2.8, we could not observe a precise effect of these variables
on cell survival. Although they could have an explanation or biological significance, we
decided to omit as relevant in the characterization of our cells, since the signal was not
clear. However, we derived from this analysis a slightly simpler variable that tells us
whether a cell underwent a cell division event or not. So it gives us a more generalized
picture of the contribution of division to cell survival (see Figure 2.14).

30



 **  

*

************

***

Chromosome Plasmid

0

1

2

3

4

5

6

N
um

be
r 

of
 d

iv
is

io
ns

Cell status
Not filamented − Survived

Not filamented − Not survived

Filamented − Survived

Filamented − Not survived

Figure 2.7: Cell’s number of divisions. Both chromosomal and plasmid cells exhibited
a wider distribution of divisions for the surviving cells against non-surviving
cells. However, we did not appreciate a significant change between the chro-
mosome filamented cells. Therefore, the number of cell divisions’ contribution
to filamentation remains uncertain.

31



Chromosome Plasmid

0

20

40

60

T
im

e 
si

nc
e 

la
st

 d
iv

is
io

n 
to

 e
xp

er
im

en
t s

ta
rt

Cell status
Not filamented − Survived

Not filamented − Not survived

Filamented − Survived

Filamented − Not survived

Figure 2.8: Time elapsed since the last division at the beginning of the ex-
periment. The mean time of the last division before starting the experiment
indicates that it did not influence the final result for chromosomal cells. There
is a slight difference between the filamented-not survived cells and the rest for
cells with plasmids. However, the signal does not appear to be strong on the
survival role. Therefore, we conclude that we have no evidence to support that
the time of the last division at the beginning of the experiment influences the
final classification results.

2.3.3 Time to reach filamentation matters in determining cell
survival

In Figure 2.2, Figure 2.3, and Figure 2.4, we showed how, at the time of filamentation,
DsRed and GFP levels appeared indifferent to the cells. Therefore, we hypothesized that
a possible variable determining cell survival could be its time to activate its anti-stress
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response system that causes filamentation. Furthermore, we also guided our hypothesis
by previous reports showing us how the gene expression level can induce filamentation
with tight temporal coordination.

While, for our analyses, we did not measure the concentration of antibiotic that triggers
filamentation per se, we indirectly quantified its effect by using the time it took for a cell
to reach a length at which it is already considered a filamentating cell. Furthermore, to
recognize that the observed effect was a product of the experiment, we decided to keep
only filamented cells just once antibiotic exposure began.

Figure 2.9 shows how filamentation times are narrower for chromosomal cells than for
plasmid-bearing cells. Then, we hypothesize that the effect could come from the hetero-
geneity in the plasmid copy number in the population. Also, interestingly, we observed
that, for both experiments, cells that survived had longer filamentation times than those
that died. These differences in response times suggest the following: 1) if the cell grows
too fast, it will reach a limit and start to accumulate antibiotics constantly, and 2) if the
cell grows too fast, likely, the cost of maintaining an ample length for prolonged periods
of exposure will become counterproductive.
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Figure 2.9: Time to filamentation filtered. We only keep cells that filamented during
the antibiotic exposure to quantify their time to filamentation and its effect
on survival. In this way, we normalize the start times for the calculation of
the filamentation time. For both strains, the filamentation time had a more
significant delay in the surviving cells.

In Figure Figure 2.10, we decided to project the results of Figure Figure 2.9 in a space
similar to the one described in Figure Figure 2.5). Thus, we separated our data into
cells that survived and cells that did not and painted them when it took them to reach
their filamented state. We realized that, by adding this temporal component to the initial
variables of length and GFP, we could separate surviving cells from dead cells to a greater
degree. However, it may still not be enough, and there are still many other variables
that play a crucial role in understanding the ecology of stress and how some cells will be
survivors or not.
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Figure 2.10: Experiment initial values with time to filamentation. As in Fig-
ure 2.5, including the time it will take for cells to filament allows us to better
understand the phenomenon of survival. Cells that filamented and survived
generally have a much higher delay than their non-filamented peers for both
strains (see Figure 2.9).

2.3.4 Increasing the system’s complexity and analyzing it in an
unsupervised way allows a correct classification of cell states

In the experiments, we observed the importance of GFP filamentation and variability for
cell survival. Similarly, we realized that other variables must be affecting the final results.
Filamentation and GFP variability alone did not fully recapitulate the expected behavior
of the data. That is, the target variables did not capture the system’s heterogeneity.

The inability to reproduce cell classification led us to question two things: 1) the possibility
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that our sorting was wrong beforehand, and 2) we did not have enough variables to capture
the study phenomenon. We decided to take the unsupervised learning way to answer these
subjects because it allows us to project our data without prior knowledge.

We opted for the path of dimensionality reduction techniques where each variable or fea-
ture is equivalent to one dimension. The essence of dimensionality reduction is that it is
not feasible to analyze each dimension with many dimensions. Furthermore, dimension-
ality reduction helps us counteract several problems, such as reducing the complexity of
a model, reducing the possibility of overfitting a model, removing all correlated variables,
and visualizing our data in a two- or three-dimensional space for better appreciation.
Improved visualization and identification of essential variables are the main reasons to
guide and complement our research with this technique.

2.3.4.1 Principal Component Analysis (PCA) emphasizes the importance of cell
length and its GFP in cell survival

The first dimensionality reduction technique we decided to use was Principal Component
Analysis (PCA) (Pearson 1901; Hotelling 1936). Scientist mainly uses PCA to create
predictive models or in Exploratory Data Analysis (EDA). In our case, we only use it as
an EDA.

For chromosomal and plasmid strain, in Figure 2.11 and Figure 2.12, we show the projec-
tion of the first two principal components (PCs), respectively. Figure 2.11 separates the
manually annotated classes, surviving cells separated from non-surviving cells. However,
for Figure 2.12, the class separation was a bit rougher but allowed us to separate the
surviving filament cells from the dead ones.
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Figure 2.11: Principal Component Analysis of chromosomal strain. When in-
tegrating the information of different variables in a dimensionality reduc-
tion analysis, we observed a clear separation between the surviving cells and
those that did not. The contributions that determined this phenomenon
come mainly from the last amount of DsRed, GFP, and cell length (see Fig-
ure 2.13). Although it seems obvious, it effectively confirms that the tempo-
ral classification that we carry out makes sense. Longer length represents a
greater uptake of antibiotics, but in a much larger volume, so the net effect
is an internal reduction of antibiotics (see Figure 3.1).
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Figure 2.12: Principal Component Analysis of plasmid strain. By integrating the
information from different variables in a dimensionality reduction analysis,
we observed a clear separation between the filamented and non-filamented
cells. Said class separation is given by component 2 (Y-axis), which is deter-
mined primarily by the initial and final lengths of the cells (see Figure 2.14).
Furthermore, the classification also allows us to separate those filamented
cells that died from those that survived. Therefore, despite the increase in
the system’s complexity, length plays a role in determining survival.

For their part, in Figure 2.13 and Figure 2.14, we show the total contribution of each
variable per PC for the chromosomal and plasmid strain, respectively. Finding that
filamentation plays a crucial role in determining cell survival. For example, for PC2, we
appreciated how the variable end DsRed directed the dots to the positive side, while the
variable end and start length directed the dots to the opposing side. Therefore, we can
support that filamentation has a role in moving cells away from having higher amounts
of DsRed.

38



0.05

0.24

0.59

0.01

0.43

0.52

0.38

0.01

0.09

0.37

0.11

0.54

0.48

0.57

P
C

1
P

C
2

ds_red_first

divided

length_first

ds_red_last

length_last

gfp_last

gfp_first

divided

length_first

ds_red_first

gfp_first

gfp_last

length_last

ds_red_last

Absolute value of contribution

M
et

ric

Is positive? FALSE TRUE

Figure 2.13: Variables contribution of Principal Component Analysis of chromo-
somal strain. In Figure 2.11, we see that the classes we created manually
reflected what we observed when performing a reduction of dimensions anal-
ysis. Here we show the individual contribution of each variable for the first
two components. The variables that most affected components 1 and 2 (X-
axis and Y-axis, respectively) are the final measurements of DsRed, GFP,
length, and the initial amount of GFP. Given that they are chromosomal
strains, we should note that this variability could be produced by intrinsic
experimental noise that we could not remove. With that in mind, having
the DsRed and the final length highlights the inherent role of cells by having
increased their size.
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Figure 2.14: Variables contribution of Principal Component Analysis of plasmid
strain. In Figure 2.12, we saw that we could separate the filamented cells
from the non-filamented ones. The reduction analysis also shows a slight dif-
ference between surviving and dead cells within the small group of filamented
cells. Here we offer the individual contribution of each variable for the first
two components. For the first component (x-axis in Figure 2.11), the initial
and final GFP measurements mainly received the component’s variability.
We expected this component’s importance since it is a chromosomal strain,
so we hope its inherent variation will be inherited. On the other hand, the
second component (Y-axis in Figure 2.11) was determined by the length of
the cell. Factors that, in the chromosomal strain (see Figure 2.13), deter-
mined with the help of DsRed the separation between surviving and dead
cells.
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2.3.4.2 Uniform Manifold Approximation and Projection (UMAP) correctly
represents the local structure of cell states

Staying with only a one-dimensionality reduction technique was not an option, so we
used the UMAP technique (McInnes, Healy, and Melville 2018). We mainly decided
to use UMAP for clustering purposes and see if the annotated clusters corresponded to
the manually annotated ones. UMAP has certain advantages for these purposes, e.g., it
preserves the global structure across the whole space, so the distances between clusters
matter.

In Figure 2.15 and Figure 2.16, we show how, using the same variables used in the “PCA”
section, UMAP accomplished clustering the four proposed classes correctly. Interestingly,
in Figure 2.15, UMAP formed three general groups and four for Figure 2.16. However,
in general, UMAP clustered the surviving cells from those that did not survive. On
investigating why this separation occurred, we found that the large groups coalesced into
one another if we eliminated the division variable. So, in a way, the division also has a
role in determining survival, but it is not essential or at least not over-represented in our
data.
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Figure 2.15: UMAP coordinates of chromosome strain. We represented the cells in
a low-dimensional space. This new projection allowed it to group the cells
that survived and those that did not. Therefore, as in PCA Figure 2.11, this
technique supports the manual classification that we carry out.
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Figure 2.16: UMAP coordinates of plasmid strain. As in Figure 2.15, the represen-
tation in a low-dimensional space helped classify the cells into four groups,
two survivors and two non-survivors. The variable division marks the separa-
tion of classes. The division variable indicates whether a cell divided during
its lifetime or not. Together, the UMAP represents the manually assigned
classes.

2.3.5 Population dynamics reveal how filamentation contributes cell
survival

From the full tracking dataset, we evaluated how the different cell states behaved over
time—for example, understanding how the cells absorbed antibiotics or how they elon-
gated in time. In contrast to the dataset generated in the Section 2.3.1, we did not
truncate the results 10 minutes after the antibiotic exposure. In this way, we could
observe cell behavior before and after the presence of the toxic agent.

43



In Figure 2.17, we observed a small fraction of filamentous cells without exposure to the
toxic agent in both cell strains. However, after antibiotic exposure at minute 60, we
observed increases in the proportion of filamented cells. It is interesting to note how
filamented cells grew after antibiotic exposure for the chromosomal strain. We speculate
that this post-antibiotic growth exists because, once the SOS system that triggers fila-
mentation is activated, the system continues to grow until it reaches a limit regardless of
whether the damaging agent is still present (Sheryl S. Justice et al. 2008; Mückl et al.
2018). Moreover, we observed how the cells start to divide again after some time because
the proportion of non-filament cells starts to grow while the filament cells start to divide.
We observed the same effects for the plasmid strain. However, the number of filament
cells expected was much lower by experimental design.
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Figure 2.17: Population status over time. We calculate how many cells of each type
existed for each time point: non-filamented and filamented living cells (green
and orange areas, respectively) and dead cells (red area; we considered dead
cells as those that existed at one time and then stopped tracking). The
gray vertical lines represent each experiment’s start and end of antibiotic
exposure. The experiment was finalized with the resolution of the cells when
they returned to their non-filamented state. The effect of filamentation and
its spread after exposure to the antibiotic is evident for the chromosomal
strain. For its part, for the plasmid strain, it is observed how the filamented
cells begin to appear slowly. Their proportion is as expected, given that the
population had a wide distribution of GFP that allowed them to combat
exposure to the antibiotic.

In Figure 2.18, we showed that once antibiotics exposure began, those cells that died had
a much faster increase in DsRed than those that did manage to live, regardless of whether
they were filamented. On the other hand, surviving cells maintained their relatively stable
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DsRed levels. We noted that length was critical for the surviving cells for the chromosomal
strain by turning to the GFP and length variables for a temporal explanation. Even cells
categorized as non-filamented reached the filamentation threshold minutes after antibiotic
exposure. However, the distinction between live or dead filamented cells was not as
evident as expected. As for cells with plasmids, the effect on GFP for surviving cells was
maintained for filamented cells and decreased for non-filamented cells. For the filament
cells that died, we showed that they had, on average, a much longer initial length than
the surviving cells. We also consider it necessary to understand which variables affect cell
survival.
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Figure 2.18: Population measurements over time. The colored lines symbolize the
average value of each metric at each instant of time, while its surrounding
shaded area represents the 95% confidence interval. The vertical lines rep-
resent the start and end of antibiotic exposure. The horizontal line in the
length metric symbolizes the threshold to consider a cell filament. Regarding
the GFP metric, the behavior is relatively stable for the chromosomal strain.
We observed a faster increase of DsRed for the non-surviving populations in
both experiments. In contrast, for the plasmid strain, a decline in GFP is
observed for the population that did not survive. For the length metric, it is
interesting to note how the chromosome cells that did not filament continued
to grow past the filamentation threshold once the exposure to the antibiotic
in the chromosomal strain had ended. On the other hand, the filamented and
dead cells seem to have a greater length from the beginning for the plasmid
strain.
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2.3.6 Heterogeneity in plasmid copy-number allows various forms of
survival in addition to filamentation

We are confident that filamentation has a fundamental role in determining cell survival,
as we have shown so far. However, for plasmid cells, we have a component of our complete
interest; heterogeneity. Each cell can possess a different plasmid copy number; thus, each
could show a different behavior under stress (San Millan et al. 2016). For instance,
heterogeneity can produce resistant cells that do not suffer damage, susceptible cells, and
cells that form filaments to mitigate environmental stress.

To study the effect of variability in plasmid copy number on the survival probability of
the population, we decided to group cells by the proportion of initial GFP with respect
to the population maximum. We defined 100% of the population as the number of total
cells at the onset of antibiotic exposure. Figure 2.19 shows how the cells with the highest
amount of GFP remained unchanged once antibiotic exposure began, while the rest of the
cells started to decrease their percentage of surviving cells. However, the decrease was
not linear. On the contrary, we observed a bi-modal distribution in the reduction of live
cells. An average GFP point provided higher survival than a point below or above the
average (except for cells very close to the population maximum).
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Figure 2.19: Population survivals binned by initial GFP over time. We catego-
rized the cells’ GFP into ranges of proportions 0.05 concerning the maximum
amount of GFP in the population. 100% cells per bin of GFP was taken as
the number of cells one frame before the start of exposure to the antibiotic
(minute 50). Therefore, dark to light colors represent a generation of new
cells, and light to dark colors the death of cells. The gray vertical bars rep-
resent the start and end of antibiotic exposure. Bar’s size and color on the
right represent the percentage of the living cells 10 minutes after the end
of the experiment. As shown in Figure 2.20, we showed that the surviving
cells appear to follow something similar to a bimodal distribution. More
cells survive with a moderate amount of GFP or with an amount close to the
maximum of the population.

Therefore, what we observed was a bimodal distribution for GFP-dependent cell survival.
In order to show this effect more clearly, in Figure 2.20, we plotted the survival probability
for each GFP bin without normalizing for the population maximum. This new plot allowed
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us to observe how the bimodal survival distribution occurs for cells that did not grow as
filaments, whereas cells that filament increase their survival probability gradually as they
have more initial GFP (see also Figure 2.3).-distribution).
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Figure 2.20: Plasmid initial GFP survival probability. We calculated the survival
probability after comparing the population distributions of GFP with those
of the cells that managed to survive. To assess survival by GFP, we only
used plasmid cells. A bell forms with an upturned tail for non-filamented
cells (green dots). On the other hand, for the filamented cells (orange dots),
a continuous increase in survival is shown just when it seems that the prob-
ability of the non-filamented cells has decreased. In global, much GFP has
higher resistance, but an average GFP value without filamentation also in-
creases the probability of survival.

As in Figure 2.20, in Figure 2.21, we show the survival probability given an initial length.
We observe that survival is higher for cells that did not grow as filaments if the initial
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length was less than the average. In contrast, for filamented cells, the survival probability
increased as cell length was longer at the beginning of the experiment (see also Figure 2.4).
However, it is noteworthy that the probability of survival had a limit in which a higher
initial length meant a lower probability of survival (see red dotted lines in Figure 2.21).
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Figure 2.21: Plasmid initial length survival probability. We calculated the survival
probability after comparing the population distributions of length with those
of the cells that managed to survive. For non-filamented cells (blue dots),
the survival probability is higher for those cells with small initial lengths,
while It seems to decrease with a more extensive initial size. For their part,
for filamented cells (red dots), the probability of survival increases according
to their length but then declines when the cells are too long at first (see
red dotted line). Therefore, generally, a small and moderate length or an
initial length already filamented from the beginning increases the chances of
survival.
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2.4 Discussion

Here, we evaluated different variables that could determine cell survival upon exposure
to toxic agents by studying two experimental populations of E. coli, one strain with a
resistance gene on the chromosome and the other on multicopy plasmids. We identified
two variables that are predominantly responsible for cell survival: cell length and GFP
amount related to the cell’s inherent resistance to the toxic agent and heterogeneity in
response times.

On the other hand, as other studies have already mentioned (Heinrich, Leslie, and Jonas
2015; J. D. Wang and Levin 2009), we examined cell activity and youth in a minimalistic
way. While the distribution of the number of divisions exemplifies a broader and more
uniform range for the surviving cells, the cells that died tended to have fewer divisions.
However, for the study of cellular youth at the time of exposure to the toxic agent, the
results did not show a clear pattern of behavior for cell fate determination. Therefore,
it would be interesting to study cellular youth at a higher level of complexity in future
studies to understand its contribution to cell survival.

Interestingly, when we used temporal measurements of cell length, GFP, DsRed, and if
a cell divided, we could recapitulate, for the most part, the fates of cellular states (see
Section 2.3.1 and Section 2.3.4). Thus, increasing the system’s complexity led to better
clustering of cell states, but not how these factors interact biologically in determining
cell survival. Therefore, we decided to postulate a mathematical model that helps us
understand the critical components of cell survival.
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3 Models to the rescue; filamentation
abstraction

3.1 Introduction

By integrating information from the environment, cells can alter their cell cycle. For
instance, some cells arrest the cell division in the presence of toxic agents but continue
to grow. Previous studies have shown that this filamentation phenomenon provides a
mechanism that enables cells to cope with stress, which increases the probability of sur-
vival (Sheryl S. Justice et al. 2008). For example, filamentation can be a process capable
of subverting innate defenses during urinary tract infection, facilitating the transition
of additional rounds of intracellular bacterial community formation (S. S. Justice et al.
2006).

Although filament growth can help mitigate environmental stress (e.g., by activating the
SOS response system (Sheryl S. Justice et al. 2008)), the evolutionary benefits of pro-
ducing elongated cells that do not divide are unclear. Here, we proposed a mathematical
model based on ordinary differential equations that explicitly considers the concentration
of intracellular toxin as a function of the cell’s length (see Equation 3.1. The model is
built based on the growth ratio of measurements of the surface area (𝑆𝐴) and the cell
volume (𝑉 ), whereby the uptake rate of the toxin depends on the 𝑆𝐴. However, 𝑉 ′𝑠 rate
of change for 𝑆𝐴 is higher than 𝑆𝐴 for 𝑉 , which results in a transient reduction in the
intracellular toxin concentration (see Figure 3.1)). Therefore, we hypothesized that this
geometric interpretation of filamentation represents a biophysical defense line to increase
the probability of a bacterial population’s survival in response to stressful environments.
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Figure 3.1: Cell dimensions relationship. We evaluated the resulting geometric prop-
erties on a grid of side lengths and radii with a pill-shaped cell. By maintaining
a constant radius (typical case in bacteria such as E. coli) and increasing the
side length, the surface area / volume relationship (𝑆𝐴/𝑉 ) tends to decline
since the 𝑉 will grow at a higher rate than the 𝑆𝐴.

3.2 Filamentation model

Let us assume the shape of cells is a cylinder with hemispherical ends. Based on this
geometric structure, a nonlinear system of differential equations governing filamentation
can be written as follows:
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𝑑𝑇𝑖𝑛𝑡
𝑑𝑡 = 𝑇𝑠𝑎 ⋅ (𝑇𝑒𝑥𝑡(𝑡) − 𝑇𝑣𝑜𝑙) − 𝛼 ⋅ 𝑇𝑎𝑛𝑡 ⋅ 𝑇𝑖𝑛𝑡

𝑑𝐿
𝑑𝑡 = {𝛽 ⋅ 𝐿, if 𝑇𝑖𝑛𝑡 ≥ 𝑇𝑠𝑜𝑠, 𝑡 ≥ 𝜏𝑠𝑜𝑠 + 𝜏𝑑𝑒𝑙𝑎𝑦 and 𝐿 < 𝐿𝑚𝑎𝑥

0, otherwise

(3.1)

It considers the internal toxin (𝑇𝑖𝑛𝑡) and the cell length (𝐿) as variables. 𝑇𝑠𝑎 and 𝑇𝑣𝑜𝑙
represent the surface area and volume of the toxin in the cell, respectively. 𝑇𝑒𝑥𝑡(𝑡) is a
function that returns the amount of toxin in the cell medium. 𝑇𝑎𝑛𝑡𝑖 and 𝛼 symbolize the
amount of antitoxin and its efficiency rate, respectively. 𝛽 as the rate of filamentation.
𝐿𝑚𝑎𝑥 is the maximum size the cell can reach when filamentation is on. 𝑇𝑠𝑜𝑠 and 𝑇𝑘𝑖𝑙𝑙 are
thresholds for filamentation and death, respectively. Finally, 𝜏𝑑𝑒𝑙𝑎𝑦 is the amount of time
required to activate filamentation after reaching the 𝑇𝑠𝑜𝑠 threshold.

3.3 Numerical results

3.3.1 Filamentation provides transient resistance to stressful
conditions

When growing rod-shaped bacterial cells under constant conditions, the distribution of
lengths and radii is narrow (Schaechter et al. 1962). However, some cells produce fila-
ments when growing under stress conditions (Schaechter, MaalOe, and Kjeldgaard 1958).
Among the stress conditions that can trigger the SOS response is exposure to beta-lactam
antibiotics (Miller 2004). This phenomenon may depend on the SOS response system (Bos
et al. 2015), which can repair DNA damage, giving the cell greater chances of recovering
and surviving under stress conditions. Besides, the SOS response has been reported to
have precise temporal coordination in individual bacteria (Friedman et al. 2005).

In general, filamentation has been studied as an unavoidable consequence of stress. How-
ever, we considered filamentation an active process that produces the first line of defense
against toxic agents. Therefore, a differential equation model was proposed that assesses
the change in the amount of internal toxin as a function of cell length. At the core of
this model, we include the intrinsic relationship between the surface area and the capsule
volume since it is vital in determining cell size (L. K. Harris and Theriot 2016).

In Figure 3.2, cells grow in a ramp-shaped external toxin signal without considering a
toxin-antitoxin system. As time progresses, the toxin in the external environment in-
creases, so the cell raises its internal toxin levels. At approximately time 22, any cell
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reaches 𝑇𝑠𝑜𝑠. The control cell (unable to filament) and the average cell (capable of fila-
menting) reach the death threshold, 𝑇𝑘𝑖𝑙𝑙, at times 31 and 93 (hatched and solid black
lines), respectively. Therefore, under this example, the cell has increased its life span three
times more than the control by growing as a filament (green shaded area versus orange
shaded area). In turn, Figure 3.2 also shows stochastic simulations of the system in the
intake of internal toxins. Since cell growth and death processes are inherently stochastic,
stochastic simulations would be a better approximation. However, from now on, we will
continue studying the deterministic model.
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Figure 3.2: Effect of filamentation on intracellular toxin concentration. In the
presence of an extracellular toxic agent, the intracellular concentration of the
toxin (𝑇𝑖𝑛𝑡) increases until reaching a damage threshold that triggers filamen-
tation (𝑇𝑠𝑜𝑠, blue point), increasing cell length (𝐿). When filamentation is
on, the cell decreases 𝑇𝑖𝑛𝑡 due to the intrinsic relationship between surface
area and cell volume. When the cell reaches its maximum length, it dies
if the stressful stimulus is not removed (𝑇𝑘𝑖𝑙𝑙, red dot). The hatched line
represents a cell that can not grow as a filament. The orange shaded area
represents the time between stress and the non-filament cell’s death, while the
green shaded area represents the temporal gain. The blue background lines
represent stochastic simulations of the same system.

3.3.2 Filamentation increases the minimum inhibitory concentration

In other to characterize the degree of resistance, dose-response experiments determine the
Minimum Inhibitory Concentration (MIC) (Jennifer M. Andrews 2001; J. M. Andrews
2002). Bacteria are capable of modifying their MIC through various mechanisms, for
example, mutations (Lambert 2005), impaired membrane permeability (Sato and Nakae
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1991), flux pumps (Webber 2003), toxin-inactivating enzymes (Wright 2005), and plastic-
ity phenotypic (Sheryl S. Justice et al. 2008). The latter is our phenomenon of interest
because it considers the change in shape and size, allowing us to study it as a strategy to
promote bacterial survival.

We analyzed the MIC change caused by filamentation through stable exposure exper-
iments of different toxin amounts at other exposure times. Computational simulations
show that when comparing cells unable to filament with those that can, there is an increase
in the capacity to tolerate more generous amounts of toxin, increasing their MIC (see Fig-
ure 3.3). Therefore, it confers a gradual increase in resistance beyond filamentation’s role
in improving the cell’s life span as the exposure time is longer.
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Figure 3.3: Effect of filamentation on minimum inhibitory concentration (MIC).
By exposing a cell to different toxin concentrations with stable signals, the cell
achieves a set MIC for conditions without or with filamentation (separation
between stressed and dead state) for each exposure time, without represent-
ing a change for the normal state cells’ points (blue zone). Thus, the green
line represents a gradual MIC increase when comparing each MIC between
conditions for each exposure time.

3.3.3 Heterogeneity in the toxin-antitoxin system represents a
double-edged sword in survival probability

One of the SOS response system properties is that it presents synchronous activation
times within homogeneous populations (Friedman et al. 2005). It has constant gene
expression rates that help it cope with stress; however, it is possible to introduce variability
by considering having multicopy resistance plasmids (Million-Weaver and Camps 2014).
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Therefore, the response times would have an asynchronous behavior at the global level
but synchronous at the local level.

To include this observation in the model, we include a negative term for the internal
toxin representing a toxin-antitoxin system. Therefore, the model now has an efficiency
rate of the antitoxin and a stable amount per cell. We simulate the effect of the toxin-
antitoxin system variation within a 1000-cell population; we initialize each one with similar
initial conditions, except for the amount of internal antitoxin, defined as 𝑇𝑎𝑛𝑡𝑖 ∼ 𝑁(𝜇, 𝜎).
Considering that 𝑇𝑎𝑛𝑡𝑖 values < 0 are equal to 0. For each experiment, 𝜇 = 25, while it
was evaluated in the range [0 − 20]. For the generation of pseudo-random numbers and
to ensure the results’ reproducibility, the number 42 was considered seed.

As shown in Figure 3.4), when we compare heterogeneous populations in their toxin-
antitoxin system, we can achieve different population dynamics, that is, changes in the
final proportions of cell states; normal, stressed, and dead. This difference is because the
cell sometimes has more or less antitoxin to handle the incoming stress.
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Figure 3.4: Variability in the toxin-antitoxin system produces different propor-
tions of cell states. Histograms represent the distribution of antitoxin quan-
tity, while the curves represent the population’s fraction over time. The cell
will start to filament after reaching a certain internal toxin threshold, 𝑇𝑠𝑜𝑠.
Therefore, the expected global effect on the population’s response times based
on the amount of antitoxin is asynchronous, while at the local level, it is syn-
chronous. Consequently, different proportions are presented in the cellular
states since some cells will activate the filamentation system before and oth-
ers later.

Considering that the toxin-antitoxin system’s variability can modify the proportions of
final cell states, a question arose about heterogeneity levels’ global behavior. To answer
this question, we evaluate the probability of survival for each population, defined by its
distribution of antitoxin levels. In this way, we characterized the population survival
probability function into three essential points according to its effect: negative, invariant,
and positive (see Figure 3.5). Furthermore, these points are relative to the homogeneous
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population’s death time in question (𝜏𝑘𝑖𝑙𝑙): when 𝑡 < 𝜏𝑘𝑖𝑙𝑙 will represent a detrimental
effect on survival, 𝑡 = 𝜏𝑘𝑖𝑙𝑙 will be independent of variability, and 𝑡 > 𝜏𝑘𝑖𝑙𝑙 will be a
beneficial point for survival. Therefore, we concluded that the effect of heterogeneity in
a toxin-antitoxin system represents a double-edged sword.

0

5

10

15

20

0 100 200 300
Exposure time

P
op

ul
at

io
n 

va
ria

bi
lit

y

0% 25% 50% 75%100%
Survival probability

Figure 3.5: Effect of variability on the toxin-antitoxin system. The color of the
heatmap is representative of the fraction of living cells at exposure time. The
white vertical line represents the death time of the homogeneous population
(𝜏𝑘𝑖𝑙𝑙). At 𝑡 < 𝜏𝑘𝑖𝑙𝑙, it is shown that the fraction of survivors decreases as the
variability in the population increases. When 𝑡 = 𝜏𝑘𝑖𝑙𝑙, the variability does not
affect the fraction of survivors, but it represents a percentage improvement for
the homogeneous population. Finally, when 𝑡 > 𝜏𝑘𝑖𝑙𝑙, the heterogeneity of the
population favors survival.
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3.4 Benefits and limitations of the model

Today, there have been advancements in the number of techniques that have allowed it
to extend quantitative analyses to individual cells’ dynamic observations (Campos et al.
2014; Meldrum 2005; Sliusarenko et al. 2011; Taheri-Araghi et al. 2017; Ursell et al.
2017). Therefore, studying their cellular behavior daily from medium to medium can
be somewhat reproducible, facilitating the association of complex biological functions in
simple mathematical equations (Neidhardt 1999).

Here, we proposed a mathematical model showing that filamentation could be a popula-
tion’s resilience mechanism to stress conditions. Finding that filamentation’s net effect
generates an additional window of time for the cell to survive, decreasing the toxin’s intra-
cellular concentration. However, we also found that filamentation’s side effect increases
the cell’s minimum inhibitory concentration. On the other hand, when we introduce vari-
ability in the amount of antitoxin in a cell population, we found that heterogeneity can
be a double-edged sword, sometimes detrimental and sometimes beneficial, depending on
the time of exposure to the toxic agent.

Notwithstanding the lack of parameters that are a little closer to reality, confirming that
the model can work under experimental conditions would represent an achievement due
to its explanatory simplicity. Due to the above, despite being simple, the model could be
able to recapitulate the behavior seen in nature from variables that we can easily calculate
with single-cell measurements. However, in other situations, it could be helpful to consider
adding variables such as cell wall production and peptidoglycans’ accumulation, among
others. Starting in this way, the study of filamentation as a mechanism oriented to the
ecology of stress.
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4 Discussion

Bacterial cell survival is part of a complex biological system, which is one of the funda-
mental problems of the health sector in this century. In this work, we have analyzed the
role of filamentation in cell survival through multiple levels of complexity. Inquiring, one
step at a time, into the ecology of bacterial stress.

First, we exposed two bacterial strains, one with an antibiotic resistance gene on the
chromosome and one on multicopy plasmids, in a stressful environment with ampicillin.
In both cases, we observed four states in the cells at the end of the experiment: live
filamented, live non-filamented, dead filamented, and dead non-filamented cells. By in-
specting each category’s specific characteristics, we could identify that cell length was
indeed related to the probability of survival. In addition, we showed that each cell’s in-
herent resistance defined whether or not filamentation would occur for the plasmid strain,
where low resistance values were conducive to filamentation.

However, the growth rate was critical in determining the final cellular state. We observed
that moderate growths were mainly related to survival. In contrast, we associated rapid
growth with cell death. Previous findings, in addition, could have other explanations that
are not mutually exclusive, such as the cell cycle or how fast a given cell was dividing.
So the contribution of these variables in conjunction with filamentation could be a future
study of interest to improve our understanding of cell survival.

Our next step was to abstract the fundamental information to define a mathematical
model that would help us better understand the workings of filamentation in cell survival.
We postulated a mathematical model built from a system of differential equations that
considers the cell’s geometric relationships (i.e., a pill shape) against exposure to a toxic
substance in the environment. We assume that the consumption of antibiotics by the
cell is perceived through its surface area (𝑆𝐴), while the cell volume (𝑉 ) defines its
concentration. Consequently, since the rate of change of 𝑆𝐴 is lower than 𝑉 , this results
in a transient reduction in the intracellular concentration of the toxin.

In the experiments, we showed how cells begin to filament upon a pulse of antibiotics,
and from this, it would begin their bid for survival. The model allowed us to consider
thousands of different cells to precisely determine the impact of filamentation on their
survival. For instance, upon incremental exposure to the toxic substance, a cell can
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increase its lifetime window by simply growing. If the antibiotic wears off before the cell
reaches a threshold of death for some reason, it will have paid off; the cell will have won
the bet, and it will have survived. Conversely, if a cell can not grow as a filament, it will
depend entirely on its inherent resistance levels.

In addition to the increase in the expected lifetime of the cell upon exposure to a toxic
agent, the model showed us that filamentation could confer an increase in the Minimum
Inhibitory Concentration (MIC). So if a cell can grow as a filament, a higher amount of
the toxic agent will be needed to kill it. However, bacteria generally live in heterogeneous
populations, and sometimes their inherent resistance levels will play a vital role in their
survival.

The model showed us that heterogeneity in toxin-antitoxin response systems could rep-
resent a double-edged sword for cell survival depending on the time of exposure to the
toxin. Heterogeneity could be favorable for survival if the time of exposure to the toxic
agent is longer than the time at which the population without heterogeneity dies com-
pletely, while it would be detrimental otherwise. Thus, globally, filamentation is crucial
for resilience, both at the individual and population scale.

However, although our model’s advantages are its simplicity, ease of interpretation, and
reproducibility of the biological phenomenon in question, it also entails limitations to be
considered in further work.

Our model assumes zero growth if the cell does not reach the filamentation threshold.
While this may be true at the population average level, the reality is that cells are con-
stantly growing and dividing. Integrating constant growth and division events could help
us understand how, under what conditions, and why filamentation might be beneficial or
detrimental when considering new transition states.

Another limiting factor is the lack of a system that penalizes prolonged filamentation.
Once the cell filaments, our model considers only two possible scenarios; the cell can ei-
ther continue with filamentation for its entire lifetime or die from crossing a toxic agent
threshold. However, we can suggest that maintaining a filamentary state carries an ener-
getic and membrane-material cost that may be difficult to supply. Thus, a cell could die
from spending too long in the filamentation state if exposure to the toxic agent does not
cease.

The model does not consider what happens after the death of a cell or its interactions
with other population members. We could hypothesize different scenarios: for instance,
filament cells could absorb a more significant amount of the toxic agent so that some
surrounding cells will not perceive much threat. On the other hand, if a cell dies, even-
tually, the capabilities of the cell membrane disappear, and its contents can diffuse into
the environment. Hence, this would increase in the toxic agent’s local concentration that
nearby cells could acquire. How would this change the overall dynamics of the system?
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What would be the new cellular states when evaluating filamentation in the context of
cellular communities?

In conclusion, although we based our model on experimental evidence, it does not consider
all possible biological aspects. However, this allowed us to analyze and better understand
filamentation as a mechanism capable of increasing the resilience of a bacterial population
against a toxic agent exposure, for example, antibiotics. Therefore, the generation of new
models and experiments to understand filamentation in-depth and its implications for
bacterial survival will be necessary to help us combat the current problem of antibiotic
resistance.
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Appendix

Code availability

All code used in each project phase can be located on GitHub. Below we listed the
repositories used and a brief description of their content.‘

Table 4.1: Github repositories used for this project.

Repository Description
https://github.com/ccg-esb-lab/uJ It contains a series of programs in 𝜇J, which

consist of an 𝐼𝑚𝑎𝑔𝑒𝐽 macro library for
quantifying unicellular bacterial dynamics in
microfluidic devices. Besides, it includes all the
Python code used for the image analysis
processing and our developed custom Napari
cell-viewer (see Chapter 1).

https://github.com/jvelezmagic/
undergraduate_research_project

It contains all the files necessary to reproduce this
document in its entirety. In addition, it includes
the code used in R to analyze the tabular data of
the experiments (see Chapter 2).

https://github.com/jvelezmagic/
CellFilamentation

In includes all the Julia code used to create the
mathematical filamentation model exposed in
Chapter 3.

Software tools

Python

Below is the main list of packages used for Chapter 1

• Python (Van Rossum and Drake 2009).
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• dask (Rocklin 2015).
• ipython (Pérez and Granger 2007).
• matplotlib (Hunter 2007).
• napari (Sofroniew et al. 2021).
• networkx (Hagberg, Swart, and S Chult 2008).
• numpy (C. R. Harris et al. 2020).
• pandas (McKinney et al. 2010).
• pickle (Van Rossum 2020).
• scikit-image (van der Walt et al. 2014).
• shapely (Gillies et al. 2007--).

R

Below is the main list of packages used for Chapter 2 and the reproducibility of this
undergraduate research project.

• base (R Core Team 2022).
• embed (Hvitfeldt and Kuhn 2022).
• fs (Hester, Wickham, and Csárdi 2021).
• GGally (Schloerke et al. 2021).
• ggdist (Kay 2022).
• ggpubr (Kassambara 2020).
• here (Müller 2020).
• janitor (Firke 2021).
• knitr (Xie 2022).
• patchwork (Pedersen 2020).
• plotly (Sievert et al. 2021).
• quarto (Allaire 2022).
• renv (Ushey 2022).
• rmarkdown (Allaire et al. 2023).
• sessioninfo (Wickham et al. 2021).
• stringr (Wickham 2019).
• tidymodels (Kuhn and Wickham 2022).
• tidytext (Robinson and Silge 2022).
• tidyverse (Wickham 2022).

Julia

Below is the main list of packages used for Chapter 3.
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• Julia (Bezanson et al. 2017).
• DrWatson.jl (Datseris et al. 2020).
• DifferentialEquations.jl (Rackauckas and Nie 2017b, 2017a, 2018).
• DataFrames.jl (White et al. 2021).

Software usage

Undergraduate research project

This code base uses the R Language , Quarto, and renv to do a reproducible scientific
project named bacterial-filamentation-research.

1. Clone the repository with: git clone https://github.com/jvelezmagic/bacterial-filamentation-research.
2. Download latest version of R.
3. Download latest version of Quarto.
4. Open R project.
5. Install the renv package with install.packages('renv').
6. Restore working environment with: renv::restore().
7. Render the book with: quarto::quarto_render().
8. Edit documents and render again.

Cell-viewer

This code base is using the Python Language.

1. Clone the repository with: git clone https://github.com/ccg-esb-lab/uJ.
2. Go to single-channel directory.
3. Inside of MGGT-AMP-Pulse (i.e., chromosome strain) or pBGT-AMP-Pulse (i.e., plas-

mid strain) enter to 6_Lineages_corrector_napari.ipynb.
4. Change the parameters and use it.

Filamentation model

This code base is using the Julia Language and DrWatson to do a reproducible scientific
project named CellFilamentation.

1. Clone the repository with: git clone https://github.com/jvelezmagic/CellFilamentation.
2. Download latest version of Julia.
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3. Open Julia project.
4. Open Julia console and do the following to restore working environment:

using Pkg
Pkg.activate(".") # Path to the project.
Pkg.instantiate()

5. Play with the model.

Colophon

This undergraduate research project was written in RStudio using Quarto. The website
is hosted via GitHub Pages, and the complete source is available via GitHub.

This version of the project was built with R version 4.2.1 (2022-06-23) and the following
packages:

Table 4.2: Packages used to built the project documents.

Package Version Source
embed 1.0.0 CRAN (R 4.2.0)
fs 1.5.2 CRAN (R 4.2.0)
GGally 2.1.2 CRAN (R 4.2.0)
ggdist 3.2.0 CRAN (R 4.2.0)
ggpubr 0.4.0 CRAN (R 4.2.0)
here 1.0.1 CRAN (R 4.2.0)
janitor 2.1.0 CRAN (R 4.2.0)
knitr 1.39 CRAN (R 4.2.0)
patchwork 1.1.1 CRAN (R 4.2.0)
plotly 4.10.0 CRAN (R 4.2.0)
quarto 1.2 CRAN (R 4.2.0)
renv 0.15.5 CRAN (R 4.2.1)
rmarkdown 2.20 CRAN (R 4.2.0)
sessioninfo 1.2.2 CRAN (R 4.2.0)
stringr 1.4.0 CRAN (R 4.2.0)
tidymodels 1.0.0 CRAN (R 4.2.0)
tidytext 0.3.3 CRAN (R 4.2.0)
tidyverse 1.3.2 CRAN (R 4.2.0)
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